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ABSTRACT

Extensive measurements of the spinning
acoustic mode structure in the NASA 48"
Active Noise Control Fan (ANCF) test rig have
been taken. A continuously rotating
microphone rake system with a least-squares
data reduction technique was employed to
measure these modes in the inlet and exhaust.
Farfield directivity patterns in an anechoic
environment were also measured at matched
corrected rotor speeds. Several vane counts and
spacings were tested over a range of rotor
speeds. The Eversman finite element radiation
code was run with the measured in-duct modes
as input and the computed farfield results were
compared to the experimentally measured
directivity pattern.

The experimental data show that inlet
spinning mode measurements can be made very
accurately. Exhaust mode measurements may
have wake interference, but the least-squares
reduction does a good job of rejecting the non-
acoustic pressure. The Eversman radiation code
accurately extrapolates the farfield levels and
directivity pattern when all in-duct modes are
included.

INTRODUCTION

Theoretical and experimental! work have
shown that Active Noise Control (ANC) can
significantly reduce the tone levels of ducted
fans. Without adequate knowledge of the
physical structure of the acoustics,

computational ANC studies can over simplify
and lead to overly optimistic conclusions. A full
scale engine test of a new ANC concept
currently is a high risk. To bridge this gap, the
NASA Lewis Research Center’s Active Noise
Control Fan serves as a test bed to verify
proposed ANC technologies. The ANCF can
also be used for Computational Aeroacoustic
(CAA) code verification.

A unique characteristic of
turbomachinery noise is the modal structure.
The acoustic waveform is three-dimensional and
highly complex, and is best described as a
spinning mode. Knowledge of these spinning
modes is important to identify the generation
mechanism and to successfully apply noise
control.

This paper provides the baseline acoustic
noise measurements of the ANCF. In-duct
mode levels and corresponding farfield tonal
and broadband directivity patterns are presented
and compared to radiation computer code
results.

ACTIVE NOISE CONTROL FAN RIG

The ANCF, shown in figures 1 and 2
(described more fully in a companion paper?),as
configured for these experiments, has a 16-
bladed rotor at 40° pitch in a 48 inch diameter
duct. The inlet duct relative length is one
diameter. The entrance is a cylindrical duct,
followed by a spinner. The spinner is a 1:1.5
ellipsoid starting just upstream of the rotor
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plane. This spinner transitions the duct to a
hub-to-tip ratio, ¢, of 0.30 at the rotor plane.
The exhaust duct relative length is also one
diameter with a hub-to-tip ratio of 0.30 just
down stream of the rotor converging to 0.5 at
the duct exit plane.

The fan rotor consists of 16
commercially available ventilation blades. These
have an average chord length of 4.5”.

The stator vane chord is 4.5” stacked on
the mid-chord line, with a 12° twist. The tip
section is a modified 65-(12)10 airfoil and the
hub a 65-(18)10 airfoil. The airfoil camber was
modified to account for cascade effects and the
trailing edge slightly rounded off. This design
results in a very nearly axial flow aft of the
stators. Stator vane counts of 13, 14, 26, and 28
were tested. The stators are identical, resulting in
varying solidity ratios. Nominal spacing
between the rotor trailing edge and the stator
leading edge varied: 1/2, 1.0, and 2.0 times the
chord length (c) of 4.5” (i.e., 2.25”, 4.5” and
9.0”). This spacing is measured at the hub
from the fan blade trailing edge to the stator
blade leading edge.

The fan rotational speed varied from
1100 to 1886 corrected speeds (revolutions-per-
minute RPM (€)). This gives a blade passing
frequency (BPF) of 290 to 500 Hz resulting in a
wide range of cut-off ratios depending upon the
mode being analyzed. The second and third
harmonics, 2BPF and 3BPF, are also obtained.

The ANCF is located in the Aeroacoustic
Propulsion Facility3 (AAPL) at NASA Lewis, a
hemispherical anechoic (to 125 Hz.), test facility
to allow farfield noise measurements. Farfield
measurements are taken from 28 microphones at
approximately 50 feet in the ANCF horizontal
plane. The distance to the microphones varies
since the ANCF is not in the exact center of the
facility. The Sound Pressure Level (SPL) data
are corrected to 40 ft, standard day conditions.
The farfield tonal and broadband directivity
plots are obtained from these microphones. The
bandwidth is 2.2 Hz.

FAN/DUCT MODES
THEORY

The classic paper by Tyler and Sofrin4
presents the theory of fan-duct mode generation
and propagation. The generation of
circumferential spinning modes is governed by

the following equation:
{1} m= sB +/- kV

where
m circumferential mode number,

harmonic index

number of rotor blades,

an integer (0,1,2,..),

number of stator vanes.

<A AW

The rotor locked mode (k=0, m=sB)
spins at the shaft rotation speed. This mode, and
higher order modes, can only propagate in a
narrow annular duct if the blade tip speed
corresponding to its spin rate is above Mach =
1.0. Lower order modes, which spin faster, may
propagate if their spin rate results in a sonic
blade tip speed. The critical tip mach number is
greater than 1.0 for non-narrow annular ducts.
The spin rate of a circumferential mode is
determined by the following equation:

{2} Qn = sBQ/m

Q. = mode rotation speed,
Q

shaft rotation speed

Each circumferential mode, m, can have
one or more radial modes, n. Mode propagation
is dependent on the cut-off frequency, which is
unique to each (m,n) mode. This frequency is
dependent on geometric parameters and the
eigenvalue of a combined Bessel function which
is a solution to the cylindrical wave equation.
Below the cut-off frequency the mode will decay
exponentially. Above cut-off propagation
occurs and acoustic power is transmitted down
the duct and into the farfield. The cut-off
frequency is given by:

{3} foo = &co/RD

where
f.o = cut-off frequency,
é = bessel function eigenvalue,
c, = speed of sound
D = duct diameter.
The Dbessel function eigenvalue

incorporates the duct geometry effects. The cut-
off ratio gives the ratio of the mode frequency
to its cut-off frequency.

{4y € = f/fco = msB(Q,)D/60éc,



One method of generation of these
spinning modes is the periodic interaction of the
rotor wake impinging on the stator vanes. These
are the primary modes of interest in the ANCF.
A second method of generation is caused by
change in rotor blade loading due to
aerodynamic disturbances upstream of the rotor.
If these disturbances are periodic with respect to
the rotor, spinning modes may be generated.
An example of this type of disturbance
deliberately created in the ANCF is upstream
rods2. Other discontinuities in the duct wall can
generate unwanted modes as did the segmented
casing treatment in the Advanced Ducted
PropulsorS. These modes, while generally
undesirable, can contain significant acoustic
levels.

The modes generated by rotor/stator
interaction can be predicted using equations 1-3
for the vane counts used in this study. The cut
on modes and their cut-off ratios at €2,=1886
are presented in table L.

TABLE Ia; Cut-on Modes at Q. = 1886

HARMONIC: BPF 2BPF
VANE COUNT
13 (3,0) (6,0),(-7,0)
14 (2,0) (4,0),(4,1)
26 --- (6,0)
28 -—- (4,0}, (4,1)

TABLE Ib: Cut-off Ratios Q.= 1886

INLET EXHAUST
{0=0.0) (0=0.35) (0=0.5)
BPF MODEs
(2,0) 1.85 1.94 2.11
(3,0) 1.35 1.36 1.43
2BPF MODEs
(4,0) 2.13 2.13 2.13
(4,1) 1.22 1.26 1.28
(6,0) 1.51 1.51 1.52
(-7,0) 1.32 1.32 1.32
MEASUREMENTS
A rake consisting of 6 acoustic

microphones spaced at approximately equal
radial intervals is used to measure the modes.
The inlet mode measurements are taken near the
inlet entrance where the hub to tip ratio is 0.0.
The exhaust measurements were taken just

upstream of the converging section of the duct,
or alternatively, the exit plane. At those locations
the hub-to-tip ratios are 0.35 and 0.5,
respectively. Therefore, separate, removable
rakes are used in the inlet and exhaust to
measure the radial profile efficiently. The
rotating rake apparatus can be moved upstream
or downstream of these locations by rearranging
the spool order. These locations are shown on
the ANCF schematic, figure 2.

The rake assembly rotates about the duct
center line at 1/100th of the fan shaft rotation
speed. This induces a doppler shift in the
acoustic spinning modes generated by the fan.
Recognizing that each circumferential mode
spins at a unique multiple of the shaft rotation,
narrow band frequency analysis is used to obtain
the mode levels. The circumferential mode
profiles are separated into radial modes through
a least-squares curve fit using Bessel functions to
match the experimental data. Details of the
rotating rake data collection and analysis
techniques are presented in references [2] and

[6].

A sample of the reduced data is
tabulated in table 3. The header includes the rig
configuration information and the mode (m,n)
for which the particular case was curve fit. The
pressure magnitude (Pascals) and phase
(degrees) is listed versus microphone normalized
radial location. The computed pressures are
determined from the least-squares-fit of the
radial Bessel functions to the actual pressure
profile. A vector error is determined at each
radial location from the difference between the
actual and computed complex pressures divided
by the maximum experimental pressure. The
overall error of the solution is defined as the
average of the radial vector errors.

Inner wall, outer wall, mode pressure and
power levels are calculated from the
decomposed modal data. Cp, is a normalizing
coefficient, similar to that used by the V0727
code. The function multiplier is the coefficient
of the Bessel function. The Sofrin coefficient is
defined as the maximum pressure along radial
profile. The Power Level (PWL)is calculated,
including cut-off ratio and Mach number
effects, and summed to obtain the total mode
power level. It was found that for an individual
mode, about 85 to 90 dB PWL is the minimum
level measurable with the setup described here-
in.



RESULTS AND DISCUSSION

A baseline which can be used for ANC
parametric design or code verification has been
created by testing several vane counts at 3
different vane spacings. The data were resolved

into BPF, 2xBPF, and 3xBPF harmonics.

However the -3xBPF levels were generally not
significantly above the noise floor and are not

reported. Table II shows the configurations
tested.
TABLE II. ANCF Configurations Tested
(ID = In-Duct, FF = Farfield)
VANE SPACING: 1/2c lc 2c
VANE COUNT
13 ID
14 ID/FF ID/FF ID/FF
26 ID/FF  ID/FF
28 ID/FF  ID/FF

The accuracy of least-square modal
curve fit is an indication of the confidence in the
solution. The accuracy is defined as the average
vector error between the experimental and
calculated bessel function fitted pressures
referenced to the maximum pressure. (see Avg
‘Vector Err = x.xx%’ on figure 3). The radial
curve fit solutions for the inlet are exceptional,
usually less than 5% error. However, the exhaust
solutions are generally not as good, with errors
of 10% to 20%. This indicates contamination of
some kind. The solution can be mathematically
improved by using higher order, cut-off radials
in the fit. This improvement is not dramatic, and
is contrary to physical acoustics. Another
possibility is acoustic reflections. Results of
interior acoustic computer codes show this
hypothesis may be valid for limited modes. A
third possibility is interference with the
hydrodynamic wake. Ongoing studies are
investigating these possibilities.

IN-DUCT MODAL ANALYSIS

When all significant circumferential
mode orders are resolved into radial
components, a complete modal structure can be
presented in 3-D bar graph form. The
circumferential mode index, m, is plotted on the
x-axis and the radial mode index, n, on the y-
axis. The mode power level in each (m,n) mode
is given by the bar on the z-axis. The total
mode power level in each circumferential mode

is along the back wall of the 3-D plot. Finally,
the power in each circumferential mode is
summed to obtain the total tone power, PWL.
Power is chosen as the parameter to present
because of its relationship to farfield
propagation. Theory and experimental data
show that near cut-on the mode SPL becomes
very high (theoretically infinite at cut-off) but
does not contribute to farfield noise. The RPM
at which the rotor-stator interaction mode is
strongest is presented in this paper to best
illustrate the characteristics of the fan.

Figure 4a shows the inlet modal structure
for 13 vanes, spaced at 1/2c, Q. = 1800. The
level of the expected rotor/stator generated mode
at BPF (3,0) in the inletis 112.1 dB PWL. The
next highest mode is (4,0) at 95.9 dB. The total
power is 112.3 dB. Almost all of the power
generated by the fan at this condition is due to
the rotor/stator interaction. Another way of
defining this which is relevant to ANC is to sum
the power in only the non rotor/stator interaction
modes, in this case, 99.0 dB. Thus a noise
control floor of (112.1 - 99.0) 13.1 dB would
represent the maximum noise reduction possible
if a ANC system were to completely eliminate m
= 3. Some caution must be exercised in using
this computation, since the modes not shown
may exist just below the measurement floor of
approximately 85 dB. Were several of these to
exist, the floor could, in reality be higher.

The (3,0) mode is stronger in the
exhaust (figure 4b) at 1164 dB PWL. The
extraneous modes levels are similar to those
noted in the inlet. An overall mode penetration
of 17.7 dB exists. This illustrates a common
occurrence in fan modal analysis, of modes
neighboring a strong interaction mode being
weakly excited.

Thirteen vanes generate the (6,0) and (-
7,0) modes at 2BPF. These modes are seen in
figures 4¢ & 4d.

An additional mode exists at 2BPF, m =
-1. The first three radials (n=0,1,2) are cut-on at
this low order mode. These are attributed to the
Inflow Control Device (ICD), which has 11 ribs
(32-3x11 = -1). These ribs cause flow
distortions with which the fan interacts. This
mode is generally insignificant compared to the
rotor-stator interaction mode, except in a few
isolated cases.

For 14 vanes (1/2c, Q. = 1886) the BPF
rotor-stator interaction mode is (2,0). Figures Sa
& 5b show this mode is clearly dominant. The



extraneous modes are at very low levels resulting
in a very clean mode structure. The mode
penetration levels are 20.0 and 21.3 dB in the
inlet and exhaust, respectively.

Figures Sc & 5d show the same
condition at 2BPF where the interaction mode is
m=4. At this frequency 2 radials are cut-on,
(4,00 & (4,1). The (4,1) mode dominates. In
the exhaust the m= -1 ICD mode is actually
higher than the rotor stator mode, which can
cause problems when trying to demonstrate
noise control.

The rotor-stator interaction at BPF is cut-
off for 26 and 28 vanes. The 26 vane count has
a single cut-on interaction mode (6,0) at 2BPF
(figure 6). Twenty-eight vanes (figure 7)
produce (4,0) & (4,1), the same modes as for 14
vanes. Cutting-off BPF resulted in a 3-6 dB
higher PWL at 2BPF in both of these vane
configurations. The inlet noise at 2BPF is 109.1
dB for 28 vanes. The sum of BPF and 2BPF
PWLs in the inlet for 14 vanes is 110.2 dB.
Cutting-off BPF in this limited case did not
result in substantially reduced noise.

Examination of figures 4-7 show that
this fan is aft noise dominated at BPF and at
2BPF it is inlet dominated.

INTERACTION MODES VS RPM

The PWL of the interaction modes are
plotted vs. & for 13 vanes at a single 1/2 chord
(1/2¢c) spacing on figure 8. Figures 8a and 8b
show the variation in (3,0) in the inlet and
exhaust at BPF. The speed at which the mode
cuts-on is noted on the graph. At 2BPF (figures
8c and 8d) an interesting relationship between
Q. and mode PWL is seen. A general rise in
PWL with increasing . is seen until 1800 €, at
which point a drastic reduction in the level
occurs. This shape occurs in both modes (6,0)
and (-7,0) and in the inlet and the exhaust at
nearly the same frequency. These modes have
different axial wavelengths. Thus, since the
distance between the acoustic source (the vanes)
and the measurement location is different in the
exhaust and inlet, and the axial wavelength of
the two modes is different, this reduction is
unlikely due to reflection. Further analysis of
this trends and discussion follows.

Figure 9 shows the effect of rotor-stator
spacing on the PWLs generated by 14 vanes. In
general, as the spacing increases PWL decreases
because the wake decays with axial distance.

The levels as a function of . tend to increase
with increasing €. especially in the exhaust.
The total power in mode 4 at 2BPF is shown in
9¢ and 9d for all spacings. The PWLs vary as
expected in the inlet. There is a slight indication
of the PWL reduction at 1886 Q. exhaust.

Figure 10 breaks mode 4 into its radial
components. The (4,0) is cut-on over the entire
range tested. The (4,1) cuts on at .= 1544 in
the inlet and 1496 in the exhaust. This fan
clearly is dominated by the higher radial when it
is present. In the inlet, at 1886 €2, the (4,1) is
about 12 dB higher than (4,0).

The (6,0) mode generated by 26 vanes
(figure 11) shows a similar functional
characteristic vs RPM as when generated by 13
vanes (refer back to figure 8). A finer RPM
increment was taken to investigate this
phenomenon in more detail. The drop off in
mode power is substantial, a 20 dB drop over a
136 RPM increase in the inlet. Farfield
directivities confirm this.

The levels are up to 6 dB lower in the
exhaust, but the dramatic PWL drop at 1886 €
still exists. In addition, this drop off also occurs
when the spacing is increased to one chord
length, in both directions. In fact, very little
PWL difference due to chord spacing is noted in
the inlet.

The reason for this characteristic in PWL
vs RPM is unknown. The fact that this
phenomenon occurs at so many different
physical conditions indicates that it may arise
from a change at the source. Ongoing studies
are investigating the possible influence of the tip
vortex which may leave the blade at a different
angle than the rotor wake.

The total power at 2BPF in the m=4
interaction mode for 28 vanes is shown in figure
12. The exhaust data conforms to the
interesting trend. The inlet data has a more
familiar trend; the power increases with
increasing RPM. The exhaust shows a mild fall-
off in PWL, similar to the 14 vane case. Figure
13 shows the individual cut-on radials (4,0) &
(4,1) independently. The breakdown into the
radial components shows that the interference is
occurring in the n=1 radial.

To investigate the nature of the modal
solution in the aft duct, data were taken with the
rake mounted in two locations. The initial
location was mid-duct, between the 2nd and 3rd



aft spool pieces (see figure 2). Note that this is
just at the point were the duct annulus starts to
converge. An alternative location is the exhaust
exit plane. Previous experiments2 with different
inlet rake locations showed no qualitative or
quantitative difference in the modal solution.

Figure 14 shows the effect of aft
measurement location. The pressure profiles at
these locations are quite different due to the
change in hub-to-tip ratio, which influences the
bessel functions. The (2,0) mode at BPF shows
about a 3 dB difference between the
measurement locations. This could be due to
reflection caused by the convergence. Figures
14 b-d indicate that at 2BPF, modes (4,0) &
(4,1), the PWL at each station is generally within
one dB, indicating that it is unlikely a significant
reflection exists at this mode.

FARFIELD ANALYSIS

The farfield SPL for 14 vanes, three
chord spacings is shown in figure 15. The tone
and the broadband directivity are shown for BPF
& 2BPF. The lobes from the dominant m=2
inlet and exhaust modes are seen at 30° and
136° in figure 15a. At these modal peaks the
difference in SPL levels between the different
chord spacings compare favorably to the induct
levels. For example, in the farfield exhaust lobe,
a 13 dB SPL level difference is noted between
the 1/2 & 1 chord spacings. An 11 dB PWL
difference was noted in-duct. The aft
domination of the noise is propagated to the
farfield.  Figure 15b confirms the inlet
dominance of the noise at 2BPF.

Figure 16 presents the farfield data for
26 vanes. The insignificant difference in PWL
due to chord spacing that was seen in-duct is
also seen in the farfield, particularly in the inlet.
The lobe at 40° is due to the (6,0) inlet mode.
The smaller lobe at 5° is from the (-1,n) modes.
The exhaust directivity also shows the m = 6
lobe and what appears to be interference from
the m = -1 lobe. Modes of different
circumferential order can combine in unique
ways depending on their relative phasing
creating constructive and destructive interference
in the directivity patterns, making it difficult to
attribute the farfield directivity characteristics at
a single azimuthal angle to specific modes.

The 28 vane farfield directivity on figure
17 confirms the relative levels of the in-duct
modal distribution has been propagated to the
farfield. The (4,1) mode is 9 dB higher in the
inlet and 1 dB higher in the exhaust (figure 7).

The (4,1), having a cut-off ratio closer to unity
has a greater farfield propagation angle when
measured from the axis. The (4,0) lobe angles
are at approximately 22° and 142°. The (4,1)
lobe angles are at approximately 45° and 118°.
The relative levels of these lobes compare
favorably to the in-duct mode levels noted.

RADIATION CODE VERIFICATION

COMPUTATION OF FARFIELD
RADIATION

INLET RADIATION

Eversman and Roy8 solve the noise
radiation problem using a finite element
method. The propagation in the duct and the
radiation to the farfield are included in one
model. The acoustic problem is formulated in
terms of the acoustic perturbation velocity
potential. They solve the duct eigenvalue
problem for a duct with uniform flow. The
formulation is a Bessel equation of order m.
The finite element solution of this equation is
the approximation to the exact solution. They
employ a Galerkin type finite element
formulation with isoparametric elements. The
mean flow is computed using a velocity potential
formulation on the same mesh that is used for
acoustic propagation and radiation. The
acoustic field equations are written in terms of
the acoustic potential and acoustic pressure, and
solved using finite element techniques.

The source is modeled in terms of the
incident and reflected modes, which are matched
to the finite element solution on the same plane.
Wave envelope elements are used in the farfield,
assuming that the sound field there
approximates that produced by a point source. It
is assumed that only outgoing waves exist at the
farfield boundary, where a Sommerfeld
radiation condition for a monopole in a uniform
flow is applied. The same boundary conditions
are applied at the baffle boundary® . With the
wave envelope elements in the farfield the entire
radiation field can be modeled with a relatively
small number of finite elements. The solution to
the finite element system is obtained using a
frontal solution method. Further details of the
finite element formulation and the solution
procedure may be found in reference 8.

AFT RADIATION

The equations governing the acoustic
field of the aft radiation are the same as those
used for the inlet. However, the jet shear layer
from the nozzle introduces a complication for
the computation of the mean flow. The shear



layer is modeled as though the duct is extended
four duct radii beyond the exit plane®. The
velocity potential is allowed to be discontinuous
across the shear layer. The acoustic pressure is
continuous over the entire region. Beyond this
“extended” duct, the internal and external flows
are allowed to mix and the velocity potential is
continuous everywhere. The extent of the
“extended” duct can be varied if needed.

The finite element techniques and
computer codes developed by Eversman and
Roy have been applied to modern turbofans!0.11
and NASA's active noise control fan!2.

The present computations were done on
Active Noise Control Fan geometry that was
tested in the Aeroacoustic Propulsion
Laboratory at Lewis Research Center.  The
farfield boundary is located at 10 diameters,
where farfield measurements are made. A long
center body and a flanged exit characterize the
aft duct geometry. In this study the source
(input) plane is the rotating rake measurement
plane of the inlet or exhaust duct. The
computation is carried out separately for the
inlet and aft radiation as indicated above. The
propagation through the inlet and aft ducts and
the respective farfield radiation are studied. A
composite prediction of the farfield directivity is
computed from 0° to 180° by combining the
inlet and aft radiation results. In the
intermediate region where the radiation from the
inlet and aft interfere with each other, the mean
square pressures from the inlet and aft have been
added to get the resultant curvell. The
computed farfield directivities are compared
with the measurements.

As explained earlier, exhaust modal data
were taken with the rotating rake at two different
axial locations in the aft duct. Figure 18 shows
that there is no significant difference in the
results of farfield propagation code when using
the experimental data from these different
locations. The results shown here and figure
14 indicates that the rotating rake system is
measuring and computing the modal
distribution very well.

MPARI T R
DATA

Figure 19 overlays the results from_the
code on to the experimental data at BPF
acquired for the 14 vane configuration (1886
Q. 1/2c). The lobe peak angle comparisons are
excellent. The magnitude comparisons are also
very good. There is a little plane wave

contamination at 0° to 10° in the experimental
data where no match is expected.

At 2BPF, figure 20, the two lobes of the
two radial modes are seen. Naturally, the
computer simulation shows the theoretical sharp
separation, which the experimental data cannot
show due to extraneous modes and not enough
spatial resolution. Figure 20a shows the farfield
experimental data compared to the code results
run with a single mode, the m=4 interaction
mode. The agreement in the aft quadrant is not
very good. This is due to the presence of the
m=-1 mode. Referring back to figure Sd, m=-1
is stronger than m=4 mode. Therefore, itis not
surprising that the agreement is not good. A
substantial improvement is noted when m=-1 is
included as shown on figure 20b.

Figure 21 shows the code experimental
data comparisons for 26 vanes. The ICD mode
at 10° & 155° are not included in the
computation, but are seen in the experimental
data. Also, the constructive and destructive
interference in the range 70° to 110° due to the
overlap in the inlet and exhaust propagation
fields do not agree,. This is expected because
for these computations the code used the rms
pressure to obtain the overlap between the inlet
and exhaust fields. The inlet lobe peak angle is
in good agreement. A slight over-protection in
the magnitude is seen. The aft directivity does
not agree due to the interference in the m=-1
mode.

The directivity comparison for 28 vanes
is shown on figure 22. The peak angles of the
two lobes from the (4,0) & (4,1) modes are
again predicted very well. The magnitude of the
strong inlet mode levels are also in excellent
agreement. The aft directivity agreement is pot
good because of the weaker exhaust mode levels,
which also have several interfering modes (m=-
1,3&5) of approximately equal amplitude
(figure 7b). Again, this is an indication of the
problems associated with modes combining in
the farfield resulting in possible azimuthal
variations in the directivity.

ARK

The in-duct modal structures of the
ANCEF test rig were presented for 13, 14, 26 and
28 vanes spaced at 1/2, 1 and 2 chord lengths.
The corresponding farfield directivity was also
shown. The interaction mode as a function of
rotor corrected RPM were presented in this
paper. Complete modal structure at each RPM



was also taken and exists as a database, but was
not presented due to space constraints.

The modal structure shows the expected
high levels at the rotor-stator interaction mode.
At 2BPF, the m=-1 mode caused by the ICD
exists. In a few cases, this mode may be higher
than the mode caused by rotor-stator interaction.
An ICD which does not generate a cut-on
disturbance at 2BPF is being built. Also, the
modal structure shows that modes neighboring a
rotor-stator interaction are sometimes generated.

Both inlet and exhaust modes were
measured. Excellent modal solutions were
obtained in the inlet. The aft modal solutions
were possibly contaminated by the wake.
Current efforts are underway to examine this
contamination and reduce its influence.

There is a unique characteristic in the
mode interaction PWL level as a function of
RPM. This couples very well to the 26 vane
wake interaction, causing extreme destructive
interference at 1886 £2.. It is unknown what
causes this. Ongoing studies are investigating
the possible influence of the tip vortex which
may leave the blade at a different angle than the
rotor wake.

Comparisons of the experimental
farfield directivity to CAA code predictions
show good agreement when a single mode exists
in the duct. If more than one mode exists in the
duct, these must be included in the code input to
obtain accurate directivity patterns. The
directivity overlap between the inlet and exhaust
from the code is not expected to be accurate
since in the present computations the code uses
rms pressure to obtain the overlap. This is not a
limitation in the code, rather absolute phase was
not available from the experimental data. The
ANCEF data acquisition process will be refined so
that the mode absolute phase is obtained. With
absolute phase, the CAA can preserve complex
pressure in the farfield to better predict the
directivity in the overlap region.
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(a) ANCF with a bare inlet

(b) ANCF in the far-field test position with the Inflow
Control Device (ICD) installed

Figure 1. Active Noise Control Fan (ANCF) Test Rig.
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1

Blade Angle = 40 degrees Config: Inlet Rake/Short Spinner, hub/tip= 0.0000
Menu RPM = 1886 BPF Harmonic = 1 Circum Mode = 3 Max Radial =
mic Location Actual Mag/Phase Computed Mag/Phase & Vector Exror
0.005 0.527819 107.8 0.000010 71.8 3.5037
0.198 0.848536 123.1 0.578332 70.3 4.5110
0.380 2.706891 71.8 3.329052 66.2 4.5635
0.568 8.210139 58.7 8.076781 60.0 1.5243
0.755 13.355261 53.7 12.762413 53.7 3.9356
0.943 15.064356 50.2 15.482483 50.1 2.7769
Avg Vector Err= 3.4691%
Radial Coefficients (BBN Normalization)
n C_mn Values Real/Imag Magnitude Phase
0 3.28837 0.00000 6.872 8.980 11.31(Pa) 115.0(dB) 52.6
1 3.70374 0.00000 -0.244 0.781 0.94 (Pa) 92.3(aB) 107.4
Func Mult Sofrin Coeff Inner Wall Cutexr Wall Phase
n {Pa) (dB) (Pa) (dB) {Pa) (dB) (Pa) (dB) (deg)
0 37.18 125.4 16.15 118.5 0.00 0.0 16.15 118.5 52.6
1 3.04 103.7 1.31  96.4 0.00 0.0 0.88 92.9 107.4
n Cut Ratio Power (dB)
0 1.35108 113.33
1 0.70817 0.00

Total Power = 113.33(PWL dB)

a) Rake in Inlet
Blade Angle = 40 degrees Config: Exhaust Rake @ mid-duct, hub/tip= 0.3520
Menu RPM = 1886 BPF Harmonic = 1 Circum Mode = 3
mic Location Actual Mag/Phase Computed Mag/Phase
0.377 3.700426 153.4 2.765597 137.4 4.
0.492 5.009575 156.0 4.988208 148.6 2
0.606 7.586354 157.6 9.777608 156.6 8.
0.721 16.284429 146.6 16.051630 160.6 15.
0.835 26.210045 170.3 21.977093 162.5 20.
0.950 23.005103 161.0 25.506937 163.3 10.
Avg Vector Err= 10.2459%
Radial Coefficients (BBN Normalization)
n C_mn Values Real/Imag Magnitude
0 2.99552 0.00000 -16.914 4.878 17.81(Pa) 119.0(dB)
1 2.98436 0.00000 2.698 -0.112 2.71(pa) 102.7(dB)
Func Mult Sofrin Coeff Inner Wall Outer Wall
n (Pa) (as) (Pa) (dB) (Pa) (dB) (Pa) (dB)
0 53.35 128.6 23.36 121.3 6.53 110.3 23.35 121.4
1 8.06 112.2 4.33 106.8 4.26 106.6 2.63 102.4
n Cut Ratio Power (dB)
0 1.36845 117.76
1 0.74916 0.00

Total Power

117.76 (PWL dB)

b) Rake in Exhaust

9322

.4666

3785
0730
4369
1880

Phase
161.8
-2.7

TABLE 3. Sample Data Reduction Output.
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Max Radial =

% Vector Error

Phase
(deg)
161.8

-2.7
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FIGURE 15. Farfield SPLs (14 Vanes * Qc = 1886)
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FIGURE 17. Farfield SPLs (28 Vanes * Q¢ = 1886 * 2BPF)
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FIGURE 19. Farfield SPLs (14 Vanes @ 1/2c * Qc = 1886 * BPF)
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